Sökresultat

Filtyp

Din sökning på "*" gav 528867 sökträffar

Exponential resolution lower bounds for weak pigeonhole principle and perfect matching formulas over sparse graphs

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson'01] and highly unbalanced, dense graphs as in [Raz'04] and [Razborov'03

Simplified and Improved Separations Between Regular and General Resolution by Lifting

We give a significantly simplified proof of the exponential separation between regular and general resolution of Alekhnovich et al. (2007) as a consequence of a general theorem lifting proof depth to regular proof length in resolution. This simpler proof then allows us to strengthen the separation further, and to construct families of theoretically very easy benchmarks that are surprisingly hard f

Supercritical space-width trade-offs for resolution

We show that there are CNF formulas which can be refuted in resolution in both small space and small width, but for which any small-width proof must have space exceeding by far the linear worst-case upper bound. This significantly strengthens the space-width trade-offs in [E. Ben-Sasson, SIAM J. Comput., 38 (2009), pp. 2511-2525], and provides one more example of trade-offs in the "supercritical"

Trade-offs between size and degree in polynomial calculus

Building on [Clegg et al.’96], [Impagliazzo et al.’99] established that if an unsatisfiable k-CNF formula over n variables has a refutation of size S in the polynomial calculus resolution proof system, then this formula also has a refutation of degree k + O(n log S). The proof of this works by converting a small-size refutation into a small-degree one, but at the expense of increasing the proof si

On division versus saturation in pseudo-boolean solving

The conflict-driven clause learning (CDCL) paradigm has revolutionized SAT solving over the last two decades. Extending this approach to pseudo-Boolean (PB) solvers doing 0-1 linear programming holds the promise of further exponential improvements in theory, but intriguingly such gains have not materialized in practice. Also intriguingly, most PB extensions of CDCL use not the division rule in cut

Nullstellensatz size-degree trade-offs from reversible pebbling

We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t + 1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use t

Seeking practical CDCL insights from theoretical SAT benchmarks

Over the last decades Boolean satisfiability (SAT) solvers based on conflict-driven clause learning (CDCL) have developed to the point where they can handle formulas with millions of variables. Yet a deeper understanding of how these solvers can be so successful has remained elusive. In this work we shed light on CDCL performance by using theoretical benchmarks, which have the attractive features

Divide and conquer : Towards faster pseudo-boolean solving

The last 20 years have seen dramatic improvements in the performance of algorithms for Boolean satisfiability-so-called SAT solvers-and today conflict-driven clause learning (CDCL) solvers are routinely used in a wide range of application areas. One serious short-coming of CDCL, however, is that the underlying method of reasoning is quite weak. A tantalizing solution is to instead use stronger pse

In between resolution and cutting planes : A study of proof systems for pseudo-boolean SAT solving

We initiate a proof complexity theoretic study of subsystems of cutting planes (CP) modelling proof search in conflict-driven pseudo-Boolean (PB) solvers. These algorithms combine restrictions such as that addition of constraints should always cancel a variable and/or that so-called saturation is used instead of division. It is known that on CNF inputs cutting planes with cancelling addition and s

Using combinatorial benchmarks to probe the reasoning power of pseudo-boolean solvers

We study cdcl-cuttingplanes, Open-WBO, and Sat4j, three successful solvers from the Pseudo-Boolean Competition 2016, and evaluate them by performing experiments on crafted benchmarks designed to be trivial for the cutting planes (CP) proof system underlying pseudo-Boolean (PB) proof search but yet potentially tricky for PB solvers. Our experiments demonstrate severe shortcomings in state-of-the-ar

Clique is hard on average for regular resolution

We prove that for k ≪ 4 n regular resolution requires length nΩ(k) to establish that an Erdős–Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent, and also implies unconditional nΩ(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.

Cumulative space in black-white pebbling and resolution

We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko 2015] as a tool for obtaining results in cryptography. We consider instead the nondeterministic black-white pebble game a

Graph colouring is hard for algorithms based on hilbert's nullstellensatz and gröbner bases

We consider the graph k-colouring problem encoded as a set of polynomial equations in the standard way. We prove that there are bounded-degree graphs that do not have legal k-colourings but for which the polynomial calculus proof system defined in [Clegg et al. 1996, Alekhnovich et al. 2002] requires linear degree, and hence exponential size, to establish this fact. This implies a linear degree lo

CNFgen : A generator of crafted benchmarks

We present CNFgen, a generator of combinatorial benchmarks in DIMACS and OPB format. The proof complexity literature is a rich source not only of hard instances but also of instances that are theoretically easy but “extremal” in different ways, and therefore of potential interest in the context of SAT solving. Since most of these formulas appear not to be very well known in the SAT community, howe

Tight Size-Degree Bounds for Sums-of-Squares Proofs

We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size nΩ ( d ) for values of d = d(n) from constant all the way up to nδ for some universal constant δ. This shows that the nO ( d ) running time obtained by using the Lasserre semidefinite programming relaxations to find degree-d SOS

Supercritical space-width trade-offs for resolution

We show that there are CNF formulas which can be refuted in resolution in both small space and small width, but for which any small-width resolution proof must have space exceeding by far the linear worst-case upper bound. This significantly strengthens the space-width trade-offs in [Ben- Sasson 2009], and provides one more example of trade-offs in the "supercritical" regime above worst case recen

How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit Complexity)

We obtain the first true size-space trade-offs for the cutting planes proof system, where the upper bounds hold for size and total space for derivations with constantsize coefficients, and the lower bounds apply to length and formula space (i.e., number of inequalities in memory) even for derivations with exponentially large coefficients. These are also the first trade-offs to hold uniformly for r

Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler - Leman Refinement Steps

We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least n (k= log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfe

Trade-offs between time and memory in a tighter model of CDCL SAT solvers

A long line of research has studied the power of conflict- driven clause learning (CDCL) and how it compares to the resolution proof system in which it searches for proofs. It has been shown that CDCL can polynomially simulate resolution even with an adversarially chosen learning scheme as long as it is asserting. However, the simulation only works under the assumption that no learned clauses are

Narrow proofs may be maximally long

We prove that there are 3-conjunctive normal form formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size nΩ(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size nO(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implyi