Kursen behandlar: Matriser: matrisoperationer, matrisinvers, matrisrang Determinanter: definition och egenskaper Lineära rum: underrum, lineärt hölje, lineärt beroende/oberoende, bas, dimension Euklidiska rum: skalärprodukt, Cauchy-Schwarz olikhet, ortogonalitet, ortonormerade baser, ortogonalisering, ortogonala matriser, ortogonal projektion, ortogonalt komplement, minsta kvadratmetodThe course treats Matrices: matrix operations, matrix inverse, matrix rank Determinants: definition and properties Linear spaces: subspace, span, linear dependence/independence, basis, dimension Euclidean spaces: scalar product, Cauchy-Schwarz inequality, orthogonality, orthonormal bases, orthogonalisation, orthogonal matrices, orthogonal projection, orthogonal complement, least squares metho