Impact of velocity- and acceleration-compensated encodings on signal dropout and black-blood state in diffusion-weighted magnetic resonance liver imaging at clinical TEs
Purpose The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes sign