Sökresultat

Filtyp

Din sökning på "*" gav 527257 sökträffar

SMAC mimetics promote NIK-dependent inhibition of CD4+ TH17 cell differentiation

Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) are selective antagonists of the inhibitor of apoptosis proteins (IAPs), which activate noncanonical NF-B signaling and promote tumor cell death. Through gene expression analysis, we found that treatment of CD4+ T cells with SMs during T helper 17 (TH17) cell differentiation disrupted the balance between two antagonistic transc

Detection of pre-plaque amyloid aggregation using FTIR

Background: Alzheimer's disease (AD) is characterized by misfolding and aggregation of naturally occurring beta-amyloid peptides (Aβ). These aggregates are thought to be pathogenic to neurons, although the conformation of the pathogenic Aβ species remains unclear. Biochemical extraction methods and different microscopy techniques (TEM, confocal) can be used to identify pathogenic Aβ species in the

Underlying Differences in Health Spending Within the World Health Organisation Europe Region-Comparing EU15, EU Post-2004, CIS, EU Candidate, and CARINFONET Countries

This study examined the differences in health spending within the World Health Organization (WHO) Europe region by comparing the EU15, the EU post-2004, CIS, EU Candidate and CARINFONET countries. The WHO European Region (53 countries) has been divided into the following sub-groups: EU15, EU post-2004, CIS, EU Candidate countries and CARINFONET countries. The study period, based on the availabilit

Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development

The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, enco

Cyclin A2 regulates erythrocyte morphology and numbers

Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 kno

The indispensable role of cyclin-dependent kinase 1 in skeletal development

Skeletal development is tightly regulated through the processes of chondrocyte proliferation and differentiation. Although the involvement of transcription and growth factors on the regulation of skeletal development has been extensively studied, the role of cell cycle regulatory proteins in this process remains elusive. To date, through cell-specific loss-of-function experiments in vivo, no cell

The complex relationship between liver cancer and the cell cycle : A story of multiple regulations

The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this

p27 is regulated independently of Skp2 in the absence of Cdk2

Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27Kip1, which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Sk

Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells

During neurogenesis, cell cycle regulators play a pivotal role in ensuring proper proliferation, cell cycle exit, and differentiation of neural precursors. However, the precise role of cyclin-dependent kinases (Cdks) in these processes is not well understood. We generated Cdk2 and Cdk4 double knockout (DKO) mice and found a striking ablation of the intermediate zone and cortical plate in mouse emb

Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration

Cyclin-dependent kinase 1 (Cdk1) is an archetypical kinase and a central regulator that drives cells through G2 phase and mitosis. Knockouts of Cdk2, Cdk3, Cdk4, or Cdk6 have resulted in viable mice, but the in vivo functions of Cdk1 have not been fully explored in mammals. Here we have generated a conditional-knockout mouse model to study the functions of Cdk1 in vivo. Ablation of Cdk1 leads to a

Down-regulation of Myc is essential for terminal erythroid maturation

Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G1 phase and enucleation, suggesting possible roles for c-Myc in

Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53

Chemotherapeutics (e.g., aurora kinase inhibitors) designed to target proliferative cells are often nonspecific for tumor cells as normal cycling cells are also susceptible. Indeed, one of the major dose-limiting toxicities of aurora kinase inhibitors is a dangerous depletion of neutrophils in patients. In this study we proposed a strategy to selectively target p53 mutant cells while sparing norma

Wnt Signaling in Mitosis

Previously, the connection between cell proliferation and Wnt signaling focused on transcriptional activation of cyclin D1 and c-myc, which control the G1/S transition of the cell cycle. In this issue of Developmental Cell, the Niehrs group demonstrates mitotic activation of Wnt signaling by a novel Cdk/cyclin complex containing Cdk14 (PFTK1) and cyclin Y.

Rb/Cdk2/Cdk4 triple mutant mice elicit an alternative mechanism for regulation of the G1/S transition

The G1/S-phase transition is a well-toned switch in the mammalian cell cycle. Cdk2, Cdk4, and the rate-limiting tumor suppressor retinoblastoma protein (Rb) have been studied in separate animal models, but interactions between the kinases and Rb in vivo have yet to be investigated. To further dissect the regulation of the G1 to S-phase progression, we generated Cdk2-/-Cdk4-/-Rb-/- (TKO) mutant mic

Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2

It was believed that Cdk2-cyclin E complexes are essential to drive cells through the G1-S phase transition. However, it was discovered recently that the mitotic kinase Cdk1 (Cdc2a) compensates for the loss of Cdk2. In the present study, we tested whether Cdk2 can compensate for the loss of Cdk1. We generated a knockin mouse in which the Cdk2 cDNA was knocked into the Cdk1 locus (Cdk1Cdk2KI). Subs

The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation

The p53 tumor suppressor restricts tumorigenesis through the transcriptional activation of target genes involved in cell-cycle arrest and apoptosis. Here, we identify Prl-3 (phosphatase of regenerating liver-3) as a p53-inducible gene. Whereas previous studies implicated Prl-3 in metastasis because of its overexpression in metastatic human colorectal cancer and its ability to promote invasiveness