Nakayama-type phenomena in higher Auslander-Reiten theory
This paper surveys recent contructions in higher Auslander–Reiten theory. We focus on those which, due to their combinatorial properties, can be regarded as higher dimensional analogues of path algebras of linearly oriented type A quivers. These include higher dimensional analogues of Nakayama algebras, of the mesh category of type ZA∞ and the tubes, and of the triangulated category generated by a