Structurable algebras and models of compact simple Kantor triple systems defined on tensor products of composition algebras
Let $(A,^−)$ be a structurable algebra. Then the opposite algebra $(A^{op},^−)$ is structurable, and we show that the triple system $B_A^{op}(x,y,z):=V_{x,y}^{op}(z)=x(\overline y z)+z(\overline y x)−y(\overline x z),x,y,z\in A$, is a Kantor triple system (or generalized Jordan triple system of the second order) satisfying the condition $(A)$. Furthermore, if $A=\mathbb{A}_1\otimes\mathbb{A}_2$ de
