Below All Subsets for Some Permutational Counting Problems
We show that the two problems of computing the permanent of an n*n matrix of poly(n)-bit integers and counting the number of Hamiltonian cycles in a directed n-vertex multigraph with exp(poly(n)) edges can be reduced to relatively few smaller instances of themselves. In effect we derive the first deterministic algorithms for these two problems that run in o(2^n) time in the worst case. Classic pol
