Improving transferability of generated universal adversarial perturbations for image classification and segmentation
Although deep neural networks (DNNs) are high-performance methods for various complex tasks, e.g., environment perception in automated vehicles (AVs), they are vulnerable to adversarial perturbations. Recent works have proven the existence of universal adversarial perturbations (UAPs), which, when added to most images, destroy the output of the respective perception function. Existing attack metho
