Finding a heaviest triangle is not harder than matrix multiplication
We show that for any ε > 0, a maximum-weight triangle in an undirected graph with n vertices and real weights assigned to vertices can be found in time O(nω + n2+ε), where ω is the exponent of fastest matrix multiplication algorithm. By the currently best bound on ω, the running time of our algorithm is O(n2.376). Our algorithm substantially improves the previous time-bounds for this problem recen
