Linking Hydro-Physical Variables and Landscape Metrics using Advanced Data Mining for Stream-Flow Prediction
In Streamflow prediction the most important triggering/controlling variables are related to climate, physiography, and landscape patterns. This study investigated the effect of different landscape metrics to relate spatial patterns to surface runoff processes and predict monthly streamflow using climatic and physiographic variables for the 42 sub-basins of the Urmia Lake Basin in Iran. We develope
