On the determination of the number of factors using information criteria with data-driven penalty
As is well known, when using an information criterion to select the number of common factors in factor models the appropriate penalty is generally indetermine in the sense that it can be scaled by an arbitrary constant, c say, without affecting consistency. In an influential paper, Hallin and Liška (J Am Stat Assoc102:603–617, 2007) proposes a data-driven procedure for selecting the appropriate va