Search results

Filter

Filetype

Your search for "*" yielded 528421 hits

Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily

Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively

Expanding the Catalytic Triad in Epoxide Hydrolases and Related Enzymes

Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals. The presen

Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome

Protein synthesis on the ribosome involves hydrolysis of GTP in several key steps of the mRNA translation cycle. These steps are catalyzed by the translational GTPases of which elongation factor Tu (EF-Tu) is the fastest GTPase known. Here, we use extensive computer simulations to explore the origin of its remarkably high catalytic rate on the ribosome and show that it is made possible by a very l

Development and Application of a Nonbonded Cu2+ Model That Includes the Jahn-Teller Effect

Metal ions are both ubiquitous to and crucial in biology. In classical simulations, they are typically described as simple van der Waals spheres, making it difficult to provide reliable force field descriptions for them. An alternative is given by nonbonded dummy models, in which the central metal atom is surrounded by dummy particles that each carry a partial charge. While such dummy models alrea

Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily

It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifuncti

Understanding thio-effects in simple phosphoryl systems : role of solvent effects and nucleophile charge

Recent experimental work (J. Org. Chem., 2012, 77, 5829) demonstrated pronounced differences in measured thio-effects for the hydrolysis of (thio)phosphodichloridates by water and hydroxide nucleophiles. In the present work, we have performed detailed quantum chemical calculations of these reactions, with the aim of rationalizing the molecular bases for this discrimination. The calculations highli

Modeling the mechanisms of biological GTP hydrolysis

Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond in GTP. In addition, the availability of an increasing number of crystal structures of translational GT

Theoretical modelling of epigenetically modified DNA sequences

We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion

Catalytic stimulation by restrained active-site floppiness--the case of high density lipoprotein-bound serum paraoxonase-1

Despite the abundance of membrane-associated enzymes, the mechanism by which membrane binding stabilizes these enzymes and stimulates their catalysis remains largely unknown. Serum paraoxonase-1 (PON1) is a lipophilic lactonase whose stability and enzymatic activity are dramatically stimulated when associated with high-density lipoprotein (HDL) particles. Our mutational and structural analyses, co

Understanding the structural and dynamic consequences of DNA epigenetic modifications : Computational insights into cytosine methylation and hydroxymethylation

We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasi

The conformation of a catalytic loop is central to GTPase activity on the ribosome

The translational GTPases hydrolyze GTP on the ribosome at several stages of the protein synthesis cycle. Because of the strong conservation of their catalytic center, these enzymes are expected to operate through a universal hydrolysis mechanism, in which a critical histidine residue together with the sarcin-ricin loop of the large ribosomal subunit is necessary for GTPase activation. Here we exa

Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis

Understanding phosphoryl and sulfuryl transfer is central to many biochemical processes. However, despite decades of experimental and computational studies, a consensus concerning the precise mechanistic details of these reactions has yet to be reached. In this work we perform a detailed comparative theoretical study of the hydrolysis of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl

How valence bond theory can help you understand your (bio)chemical reaction

Almost a century has passed since valence bond (VB) theory was originally introduced to explain covalent bonding in the H2 molecule within a quantum mechanical framework. The past century has seen constant improvements in this theory, with no less than two distinct Nobel prizes based on work that is essentially developments in VB theory. Additionally, ongoing advances in both methodology and compu

Challenges in computational studies of enzyme structure, function and dynamics

In this review we give an overview of the field of Computational enzymology. We start by describing the birth of the field, with emphasis on the work of the 2013 chemistry Nobel Laureates. We then present key features of the state-of-the-art in the field, showing what theory, accompanied by experiments, has taught us so far about enzymes. We also briefly describe computational methods, such as qua

Empirical valence bond simulations of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine

Monoamine oxidases (MAOs) A and B are flavoenzymes responsible for the metabolism of biogenic amines such as dopamine, serotonin and noradrenaline. In this work, we present a comprehensive study of the rate-limiting step of dopamine degradation by MAO B, which consists in the hydride transfer from the methylene group of the substrate to the flavin moiety of the FAD prosthetic group. This article b

Recent advances in QM/MM free energy calculations using reference potentials

BACKGROUND: Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describ

Force field independent metal parameters using a nonbonded dummy model

The cationic dummy atom approach provides a powerful nonbonded description for a range of alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects. In this work we refine existing literature parameters for octahedrally coordinated Mn(2+), Zn(2+), Mg(2+), and Ca(2+), as well as providing new parameters for Ni(2+), Co(2+), and Fe(2+). In all the cases, we are

Concerted or stepwise : how much do free-energy landscapes tell us about the mechanisms of elimination reactions?

The base-catalyzed dehydration of benzene cis-1,2-dihydrodiols is driven by formation of an aromatic product as well as intermediates potentially stabilized by hyperaromaticity. Experiments exhibit surprising shifts in isotope effects, indicating an unusual mechanistic balance on the E2-E1cB continuum. In this study, both 1- and 2-dimensional free energy surfaces are generated for these compounds

The alkaline hydrolysis of sulfonate esters : challenges in interpreting experimental and theoretical data

Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem. 10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mec