The Smirnov class for spaces with the complete Pick property
We show that every function in a reproducing kernel Hilbert space with a normalized complete Pick kernel is the quotient of a multiplier and a cyclic multiplier. This extends a theorem of Alpay, Bolotnikov and Kaptanoğlu. We explore various consequences of this result regarding zero sets, spaces on compact sets and Gleason parts. In particular, using a construction of Salas, we exhibit a rotationa