Deep convolution neural network for attention decoding in multi-channel EEG with conditional variational autoencoder for data augmentation
Objectives: This project aims to develop a deep learning-based attention decoding system that can distinguish between noise and speech in noise and also identify the direction of attended speech from the brain data recorded with electroencephalography (EEG) instruments. Two deep convolutional neural network (DCNN) models will be designed: (1) one DCNN model capable of classifying incoming segments
