Using panel survey and remote sensing data to explain yield gaps for maize in sub-Saharan Africa
The aim of this paper is to combine remote sensing data with geo-coded household survey data in order to measure the impact of different socio-economic and biophysical factors on maize yields. We use multilevel linear regression to model village mean maize yield per year as a function of NDVI, commercialization, pluriactivity and distance to market. We draw on seven years of panel data on African
