Search results

Filter

Filetype

Your search for "*" yielded 525084 hits

The complex relationship between liver cancer and the cell cycle : A story of multiple regulations

The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this

p27 is regulated independently of Skp2 in the absence of Cdk2

Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27Kip1, which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Sk

Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells

During neurogenesis, cell cycle regulators play a pivotal role in ensuring proper proliferation, cell cycle exit, and differentiation of neural precursors. However, the precise role of cyclin-dependent kinases (Cdks) in these processes is not well understood. We generated Cdk2 and Cdk4 double knockout (DKO) mice and found a striking ablation of the intermediate zone and cortical plate in mouse emb

Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration

Cyclin-dependent kinase 1 (Cdk1) is an archetypical kinase and a central regulator that drives cells through G2 phase and mitosis. Knockouts of Cdk2, Cdk3, Cdk4, or Cdk6 have resulted in viable mice, but the in vivo functions of Cdk1 have not been fully explored in mammals. Here we have generated a conditional-knockout mouse model to study the functions of Cdk1 in vivo. Ablation of Cdk1 leads to a

Down-regulation of Myc is essential for terminal erythroid maturation

Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G1 phase and enucleation, suggesting possible roles for c-Myc in

Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53

Chemotherapeutics (e.g., aurora kinase inhibitors) designed to target proliferative cells are often nonspecific for tumor cells as normal cycling cells are also susceptible. Indeed, one of the major dose-limiting toxicities of aurora kinase inhibitors is a dangerous depletion of neutrophils in patients. In this study we proposed a strategy to selectively target p53 mutant cells while sparing norma

Wnt Signaling in Mitosis

Previously, the connection between cell proliferation and Wnt signaling focused on transcriptional activation of cyclin D1 and c-myc, which control the G1/S transition of the cell cycle. In this issue of Developmental Cell, the Niehrs group demonstrates mitotic activation of Wnt signaling by a novel Cdk/cyclin complex containing Cdk14 (PFTK1) and cyclin Y.

Rb/Cdk2/Cdk4 triple mutant mice elicit an alternative mechanism for regulation of the G1/S transition

The G1/S-phase transition is a well-toned switch in the mammalian cell cycle. Cdk2, Cdk4, and the rate-limiting tumor suppressor retinoblastoma protein (Rb) have been studied in separate animal models, but interactions between the kinases and Rb in vivo have yet to be investigated. To further dissect the regulation of the G1 to S-phase progression, we generated Cdk2-/-Cdk4-/-Rb-/- (TKO) mutant mic

Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2

It was believed that Cdk2-cyclin E complexes are essential to drive cells through the G1-S phase transition. However, it was discovered recently that the mitotic kinase Cdk1 (Cdc2a) compensates for the loss of Cdk2. In the present study, we tested whether Cdk2 can compensate for the loss of Cdk1. We generated a knockin mouse in which the Cdk2 cDNA was knocked into the Cdk1 locus (Cdk1Cdk2KI). Subs

The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation

The p53 tumor suppressor restricts tumorigenesis through the transcriptional activation of target genes involved in cell-cycle arrest and apoptosis. Here, we identify Prl-3 (phosphatase of regenerating liver-3) as a p53-inducible gene. Whereas previous studies implicated Prl-3 in metastasis because of its overexpression in metastatic human colorectal cancer and its ability to promote invasiveness

Hematopoiesis and thymic apoptosis are not affected by the loss of Cdk2

Cell cycle regulation is essential for proper homeostasis of hematopoietic cells. Cdk2 is a major regulator of S phase entry, is activated by mitogenic cytokines, and has been suggested to be involved in antigen-induced apoptosis of T lymphocytes. The role of Cdk2 in hematopoietic cells and apoptosis in vivo has not yet been addressed. To determine whether Cdk2 plays a role in these cells, we perf

Kinase-independent function of Cyclin E

E-type cyclins are thought to drive cell-cycle progression by activating cyclin-dependent kinases, primarily CDK2. We previously found that cyclin E-null cells failed to incorporate MCM helicase into DNA prereplication complex during G0 → S phase progression. We now report that a kinase-deficient cyclin E mutant can partially restore MCM loading and S phase entry in cyclin E-null cells. We found t

Cdk2 and Cdk4 cooperatively control the expression of Cdc2

Progression through the mammalian cell cycle is associated with the activity of four cyclin dependent kinases (Cdc2/Cdk1, Cdk2, Cdk4, and Cdk6). Knockout mouse models have provided insight into the interplay of these Cdks. Most of these models do not exhibit major cell cycle defects revealing redundancies, and suggesting that a single Cdk might be sufficient to drive the cell cycle, similar as in

PRKAR1A inactivation leads to increased proliferation and decreased apoptosis in human B lymphocytes

The multiple neoplasia syndrome Carney complex (CNC) is caused by heterozygote mutations in the gene, which codes for the RIα regulatory subunit (PRKAR1A) of protein kinase A. Inactivation of PRKAR1A and the additional loss of the normal allele lead to tumors in CNC patients and increased cyclic AMP signaling in their cells, but the oncogenetic mechanisms in affected tissues remain unknown. Previo

Mouse models of cell cycle regulators : New paradigms

In yeast, a single cyclin-dependent kinase (Cdk) is able to regulate diverse cell cycle transitions (S and M phases) by associating with multiple stage-specific cyclins. The evolution of multicellular organisms brought additional layers of cell cycle regulation in the form of numerous Cdks, cyclins and Cdk inhibitors to reflect the higher levels of organismal complexity. Our current knowledge abou

IL-7 promotes T cell proliferation through destabilization of p27Kip1

Interleukin (IL)-7 is required for survival and homeostatic proliferation of T lymphocytes. The survival effect of IL-7 is primarily through regulation of Bcl-2 family members; however, the proliferative mechanism is unclear. It has not been determined whether the IL-7 receptor actually delivers a proliferative signal or whether, by promoting survival, proliferation results from signals other than

Biochemical characterization of Cdk2-Speedy/Ringo A2

Background: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required

Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter

Kaposi sarcoma-associated herpesvirus (KSHV) infects endothelial cells within KS tumors, and these cells express the KSHV latent-cycle gene k-cyclin (kCYC) as well as vascular endothelial growth factor receptor 3 (VEGFR-3), a marker for lymphatic endothelium. To further understand KSHV-mediated pathogenesis, we generated transgenic mice expressing kCYC under the control of the VEGFR-3 promoter. kC

The N-terminal peptide of the Kaposi's sarcoma-associated herpesvirus (KSHV)-cyclin determines substrate specificity

Cyclin-dependent kinases (Cdks) are activated by cyclin binding and phosphorylation by the Cdk-activating kinase (CAK). Activation of Cdk6 by the D-type cycling requires phosphorylation of Cdk6 by CAK on threonine 177. In contrast, Cdk6 is activated by the Kaposi's sarcoma-associated herpesvirus (KSHV)-cyclin in the absence and presence of CAK phosphorylation. The activity of Cdk6·KSHV-cyclin comp