Search results

Filter

Filetype

Your search for "*" yielded 534174 hits

High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data

The primary sequence of Erythrina cristagalli lectin (ECL) was mapped by mass spectrometry, and the crystal structures of the lectin in complex with lactose and 2'-alpha-L-fucosyllactose were determined at 1.6A and 1.7A resolution, respectively. The two complexes were compared with the crystal structure of the closely related Erythrina corallodendron lectin (ECorL) in complex with lactose, with th

Bacterial proteomics and vaccine development

Until recently, the development of vaccines for use in humans relied on the response to attenuated or whole-cell preparations, or empirically selected antigens. The post-genomic era holds the possibility of rational design of novel vaccines for important human pathogens. The discovery and development of these new vaccines is likely to be accomplished through integrated proteomic strategies. Althou

Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients

By comparing the CSF proteome between Alzheimer disease (AD) patients and controls it may be possible to identify proteins that play a role in the disease process and thus to study the pathogenesis of AD. We used mini-gel technology in a two-dimensional electrophoresis procedure, sensitive SYPRO Ruby staining and mass spectrometry for clinical screening of disease-influenced CSF proteins in 15 AD

Characterization of the P13 membrane protein of Borrelia burgdorferi by mass spectrometry

Borrelia burgdorferi sensu lato is a tick-borne pathogen that causes Lyme disease. The characterization of membrane proteins from this and other pathogens may yield a better understanding of the mechanisms of infection and information useful for vaccine design. Characterization of the highly hydrophobic Borrelia outer membrane component P13 from a mutant (OspA- OspB- OspC- and OspD-) strain was un

Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry

A preparative proteomic approach, involving liquid phase isoelectric focusing (IEF) in combination with one-dimensional electrophoresis and electroelution followed by mass spectrometry and database searches, was found to be an important tool for identifying low-abundant proteins (microgram/L) in human cerebrospinal fluid (CSF) and membrane proteins in human frontal cortex. Several neuron-related p

Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information

Glycoproteins are a functionally important class of biomolecules for which structural elucidation presents a challenge. Fragmentation of N-glycosylated peptides, employing collisionally activated dissociation, typically yields product ions that result from dissociation at glycosidic bonds, with little occurrence of dissociation at peptide backbone sites. We have applied two dissociation techniques

Identification of proteins from Escherichia coli using two-dimensional semi-preparative electrophoresis and mass spectrometry

Escherichia coli is a gram-negative bacterium that causes sepsis and infections of the nervous system, and the digestive and urinary tracts. The availability of the complete nucleotide sequence encoding the E. coli K-12 genome has made this organism an excellent model for proteomic studies. Semi-preparative two-dimensional electrophoresis, including liquid phase isoelectric focusing (IEF), one-dim

New separation tools for comprehensive studies of protein expression by mass spectrometry

Mass spectrometry has emerged as a core technique for protein identification and characterization because of its high sensitivity, accuracy, and speed of analysis. The most widespread strategy for studying global protein expression in biological systems employs analytical two-dimensional polyacrylamide gel electrophoresis (2D PAGE) followed by enzymatic degradation of isolated protein spots, pepti

Mass spectrometry of peptides in neuroscience

This review focuses on the contributions of modern mass spectrometry to neuropeptide research. An introduction to newer mass spectrometric techniques is provided. Also, the use of mass spectrometry in combination with high-resolution separation techniques for neuropeptide identification in biological samples is illustrated. The amino acid sequence information that is important for the identificati

Identification of protein vaccine candidates from Helicobacter pylori using a preparative two-dimensional electrophoretic procedure and mass spectrometry

Helicobacter pylori is an important human gastric pathogen for which the entire genome sequence is known. This microorganism displays a uniquely complex pattern of binding to complex carbohydrates presented on host mucosal surfaces and other tissues, through adhesion molecules (adhesins) on the microbial cell surface. Adhesins and other membrane-associated proteins are important targets for vaccin

Peptide mapping of proteins in cerebrospinal fluid utilizing a rapid preparative two-dimensional electrophoretic procedure and matrix-assisted laser desorption/ionization mass spectrometry

A quick two-step procedure involving liquid phase isoelectric focusing in the Rotofor cell in combination with electroelution in the Mini whole cell gel eluter has been used for purification of proteins from human cerebrospinal fluid (CSF). Fractions, each highly enriched in a single protein band and virtually free of other proteins, were selected for characterization by matrix-assisted laser deso