Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields
Let A be the generalized Cartan matrix of rank 2 Kac-Moody algebra g. We write g = g(a, b) when A has non-diagonal entries −a and −b. To each such A, its Weyl group and corresponding root lattice, we associate a ‘Fibonacci type ’ integer sequence. These sequences are derived from the coordinates of the real root vectors in the root space. Each element of each sequence can be expressed as a polynom