Slowly recurrent Collet–Eckmann maps with non-empty Fatou set
In this paper, we study rational Collet–Eckmann maps for which the Julia set is not the whole sphere and for which the critical points are recurrent at a slow rate. In families where the orders of the critical points are fixed, we prove that such maps are Lebesgue density points of hyperbolic maps. In particular, if all critical points are simple, these maps are Lebesgue density points of hyperbol