High order singular rank one perturbations of a positive operator
In this paper self-adjoint realizations in Hilbert and Pontryagin spaces of the formal expression L-alpha = L + <(.),psi >psi are discussed and compared. Here L is a positive self-adjoint operator in a Hilbert space H with inner product <(.), (.)>, a is a real parameter, and p in the rank one perturbation is a singular element belonging to H-nH-n+1 with n >= 3, where {H-s}(s=-infinity)(infinity) i
