Tight size-degree bounds for sums-of-squares proofs
We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size nΩ(d) for values of d = d(n) from constant all the way up to nδ for some universal constant δ. This shows that the nO(d) running time obtained by using the Lasserre semidefinite programming relaxations to find degree-d SOS proofs
