Sökresultat

Filtyp

531675 sökträffar

No title

DIC analysis of deformation in Harmonic Structured materials MASTER THESIS PROJECT(30HP) 1. Background Modern demands in structural materials can be hardly met by the traditional polycrystalline materials with homogeneous structures. Such materials are either ductile but too soft when coarse-grained (CG; crystallite size d³10µm) or strong but too brittle when nano- or ultrafine-grained (UFG; cryst

https://www.material.lth.se/fileadmin/material/MScTheses/2019-Ads/MTEK-MSc_Thesis-I.pdf - 2024-11-12

No title

Segmentation and analysis of 3D structures in x-ray, neutron imaging MASTER THESIS PROJECT(30HP) 1. Background Magnesium (Mg) alloys are the lightest structural metals having excellent potential in biomedical applications since their mechanical properties are some of the most similar to human bones among engineering materials. The Division of Materials Engineering at LTH works extensively on the d

https://www.material.lth.se/fileadmin/material/MScTheses/2019-Ads/MTEK-MSc_Thesis-III.pdf - 2024-11-12

No title

In vitro study of bio-degradation in Mg alloys by isothermal calorimetry MASTER THESIS PROJECT(30HP) 1. Background Magnesium (Mg) alloys are the lightest structural metals having excellent potential in biomedical applications since their mechanical properties are some of the most similar to human bones among engineering materials. The Division of Materials Engineering at LTH works extensively on t

https://www.material.lth.se/fileadmin/material/MScTheses/2019-Ads/MTEK_BYGG-MSc_Thesis.pdf - 2024-11-12

No title

Dependence of nano-hardness on precipitate structure in Mg MASTER THESIS PROJECT(30HP) 1. Background Magnesium (Mg) alloys are the lightest structural metals having excellent potential in biomedical applications since their mechanical properties are some of the most similar to human bones among engineering materials. The Division of Materials Engineering at LTH works extensively on the development

https://www.material.lth.se/fileadmin/material/MScTheses/2019-Ads/MTEK_IProd-MSc_Thesis-II.pdf - 2024-11-12

No title

Packaging Solutions AB Tetra Pak Tetra Pak is a trademark belonging to the Tetra Pak Group. General Strain rate characterization of Packaging Materials More than half of the world's consumers are looking for packaging that is recyclable, better for climate and with a low impact on the environment. With such high demand, the time is now to look into developing the 'package of the future' – one that

https://www.material.lth.se/fileadmin/material/MScTheses/2021-Ads/TetraPak-2021_MSc-2.pdf - 2024-11-12

Tentamen i Algebra

Tentamen i Algebra LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 ALGEBRA Helsingborg 2021-04-08 Anvisningar: Skriv namn och personnummer på varje papper. Alla svar ska förenklas maximalt. Hjälpmedel: Utdelat formelblad. 1. Kvadratkomplettera uttrycket 172  xx . (0.2) 2. Lös olikheten 6 9.x   (0.2) 3. Bestäm en ekvation för den räta linje som går genom punkterna (0.2) )1,3( och )

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Algebra/Tentor/AlgebraTenta-210408.pdf - 2024-11-12

1

1 LUNDS TEKNISKA HÖGSKOLA SVAR OCH ANVISNINGAR MATEMATIK ANALYS 1 Helsingborg 2023-01-13 1. a) 6 4 30 4 2 2lim 2 2 1xx x x x x         , b) 6 6 4 34 3 4 2 4 2 02 2 2lim lim 0 22 1 2 2 2 x x x xxx x x x x x x x x x xx x                , c) 0 0 0 8 0 4 2 2lim lim lim 4 4 1 4 sin 2 0 sin 2 sin 2x x x x x x x x x              , d) lim2arctan arctan ,då

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_1/Loesningar/LoesningarAnalys1_23-01-13.pdf - 2024-11-12

1

1 LUNDS TEKNISKA HÖGSKOLA Lösningar MATEMATIK ANALYS 1 Helsingborg 2023-08-25 1. a) 22 33 3 3 21 3 1 3 1 3 ii i i       . 3arg arg3 arg(1 3) . 2 3 61 3 i i i i           b) Eftersom 2z  och 9arg 4 z   så kan vi skriva 9 4 9 92 2 cos sin 2 cos 2 sin 2 4 4 4 4 z e i i                                2 22 cos sin 2 2 2 4 4 2 2 i i i    

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_1/Loesningar/LoesningarAnalys1_230825.pdf - 2024-11-12

1

1 LUNDS TEKNISKA HÖGSKOLA LÖSNINGAR MATEMATIK ANALYS 1 Helsingborg 2024-04-02 1. a) 2 2 2 2 1 1 2ln(4 2 ) 4 4 4 2 2(2 ) 2 xD x x x x x x          b) 2 2 2 3 2 3 2 1 1 42( ) ( ) 4 2 2 2 2 xD x x x x x x x                  c)  2 2(2 ) cos 2 sin 2(2 ) ( 1)cos (2 ) sin 2sin 2 cosD x x x x x x x x x x x               24cos 2 cos (2 ) sin 2 sin 2 cosx x x x

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_1/Loesningar/LoesningarAnalys1_240402.pdf - 2024-11-12

TENTAMEN I MATEMATIK

TENTAMEN I MATEMATIK LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 Analys 1 Helsingborg 2023-01-13 kl. 14.00-19.00 Hjälpmedel: FORMELBLAD. Lösningar ska vara försedda med ordentliga motiveringar. Alla svar ska förenklas maximalt. 1. Beräkna följande gränsvärden a) 6 4 30 4 2lim 2xx x x x x     , b) 6 4 3 4 2lim 2xx x x x x     , c) 0 8lim sin 2x x x , (0.2/st) d) lim2arct

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_1/Tentor/Analys1Tenta_23-01-13.pdf - 2024-11-12

TENTAMEN I MATEMATIK

TENTAMEN I MATEMATIK LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 ANALYS 1 Helsingborg 2024-04-02 kl.14.00-19.00 Hjälpmedel: FORMELBLAD. Lösningar ska vara försedda med ordentliga motiveringar. Alla svar ska förenklas maximalt. 1. Derivera och förenkla a)  2ln 4 2x (0.2) b) 2 2 2 2 x x  (0.2) c) 2(2 ) cos 2 sinx x x x    (0.3) d)  35xe x (0.3) 2. a) Beräkna absolutbeloppe

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_1/Tentor/Analys1Tenta_240402.pdf - 2024-11-12

No title

LUNDS TEKNISKA HÖGSKOLA LÖSNINGSFÖRSLAG MATEMATIK FMAA50 – Analys 2 2023-04-17 kl. 14.00–19.00 1. Svar: a) 1 8 b) ln 5 2 c) 2− √ 2 d) − ln 3 Lösningsförslag: a) ∫ 2 1 ( 1 x2 − 1 x3 ) dx = [ −1 x + 1 2x2 ]2 1 = −1 2 + 1 8 + 1− 1 2 = 1 8 b) ∫ 3 −1 x x2 + 1 dx = 1 2 ∫ 3 −1 2x x2 + 1 dx = 1 2 [ ln ( x2 + 1 )]3 −1 = 1 2 ( ln 10− ln 2 ) = ln 5 2 c) Variabelsubstitutionen t = cosx ger att∫ π 3 0 sin

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Loesningar/Tentamen_Analys_2_230417_sol.pdf - 2024-11-12

No title

LUNDS TEKNISKA HÖGSKOLA LÖSNINGSFÖRSLAG MATEMATIK FMAA50 – Analys 2 2024-03-11 kl. 8.00–13.00 1. Svar: a) 1 3 b) π − 2 8 c) ln 3 Lösningsförslag: a) ∫ 1/4 1/9 1√ x dx = [ 2 √ x ]1/4 1/9 = 2 · 1 2 − 2 · 1 3 = 1 3 b) ∫ π/4 0 sin2 x dx = ∫ π/4 0 1− cos(2x) 2 dx = [ x 2 − sin(2x) 4 ]π/4 0 = π 8 − 1 4 = π − 2 8 c) Andragradspolynomet i integrandens nämnare har nollställena −1 respektive −3, och

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Loesningar/Tentamen_Analys_2_240311_sol.pdf - 2024-11-12

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2023-03-17 kl. 8.00–13.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ 1 0 xex dx, (0.3) b) ∫ 3 0 x√ x+ 1 dx, (0.3) c) ∫ 8 3 4 (x− 2)(x+ 2) dx. (0.4) 2. Lös begynnelsevärdesproblemen a) y′′ − 3y′ − 4y = 4, y(0) = y′(0) = 2, (0.6) b)

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_230317.pdf - 2024-11-12

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2023-08-14 kl. 14.00–19.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ 8 1 1 x2/3 dx, (0.2) b) ∫ π/3 0 1 cos2 x dx, (0.2) c) ∫ π/3 0 x sinx dx, (0.3) d) ∫ 1 −1 ex 1 + ex dx. (0.3) 2. Lös begynnelsevärdesproblemen a) y′ + 2xy = 4xex

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_230814.pdf - 2024-11-12

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2024-04-08 kl. 14.00–19.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ π/2 π/3 cos(3x) dx, (0.2) b) ∫ 6 2 1 x3 dx, (0.2) c) ∫ 5 −1 x+ 3 x+ 2 dx, (0.3) d) ∫ ∞ 2 xe−x2 dx. (0.3) 2. Lös begynnelsevärdesproblemen a) ( x2 + 1 ) yy′ = x,

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_240408.pdf - 2024-11-12