Sökresultat

Filtyp

Din sökning på "*" gav 542701 sökträffar

Neutron Diffraction Study of Indole Solvation in Deep Eutectic Systems of Choline Chloride, Malic Acid, and Water

Deep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride-malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Poten

Cellulose Microbeads : Toward the Controlled Release of Nutrients to Plants

The use of conventional fertilizers is associated with pollution due to leaching and a mismatch between release rates and crop requirements for optimal development. Slow-release fertilizers could address both problems. Here, the synthesis and properties of a zinc fertilizer composed of cellulose microbeads loaded with aqueous ZnSO4 are reported for the first time. UV-vis spectrophotometry showed t

Stable Cellulose Nanofibril Microcapsules from Pickering Emulsion Templates

Electrostatic attractions are essential in any complex formation between the nanofibrils of the opposite charge for a specific application, such as microcapsule production. Here, we used cationized cellulose nanofibril (CCNF)-stabilized Pickering emulsions (PEs) as templates, and the electrostatic interactions were induced by adding oxidized cellulose nanofibrils (OCNFs) at the oil-water interface

Membrane extraction with styrene-maleic acid copolymer results in insulin receptor autophosphorylation in the absence of ligand

Extraction of integral membrane proteins with poly(styrene-co-maleic acid) provides a promising alternative to detergent extraction. A major advantage of extraction using copolymers rather than detergent is the retention of the lipid bilayer around the proteins. Here we report the first functional investigation of the mammalian insulin receptor which was extracted from cell membranes using poly(st

Ab initio reconstruction of small angle scattering data for membrane proteins in copolymer nanodiscs

Background: Small angle scattering techniques are beginning to be more widely utilised for structural analysis of biological systems. However, applying these techniques to study membrane proteins still remains problematic, due to sample preparation requirements and analysis of the resulting data. The development of styrene-maleic acid co-polymers (SMA) to extract membrane proteins into nanodiscs f

Automation of Modeling and Calibration of Integrated Preparative Protein Chromatography Systems

With the increasing global demand for precise and efficient pharmaceuticals and the biopharma industry moving towards Industry 4.0, the need for advanced process integration, automation, and modeling has increased as well. In this work, a method for automatic modeling and calibration of an integrated preparative chromatographic system for pharmaceutical development and production is presented. Bas

First-order like phase transition induced by quenched coupling disorder

We investigate the collective dynamics of a population of X Y model-type oscillators, globally coupled via non-separable interactions that are randomly chosen from a positive or negative value and subject to thermal noise controlled by temperature T. We find that the system at T = 0 exhibits a discontinuous, first-order like phase transition from the incoherent to the fully coherent state; when th

Disposable Coverslip for Rapid Throughput Screening of Malaria Using Attenuated Total Reflection Spectroscopy

Malaria is considered to be one of the most catastrophic health issues in the whole world. Vibrational spectroscopy is a rapid, robust, label-free, inexpensive, highly sensitive, nonperturbative, and nondestructive technique with high diagnostic potential for the early detection of disease agents. In particular, the fingerprinting capability of attenuated total reflection spectroscopy is promising

Recent progress in Pickering emulsions stabilised by bioderived particles

In recent years, the demand for non-surfactant based Pickering emulsions in many industrial applications has grown significantly because of the option to select biodegradable and sustainable materials with low toxicity as emulsion stabilisers. Usually, emulsions are a dispersion system, where synthetic surfactants or macromolecules stabilise two immiscible phases (typically water and oil phases) t

Keratin-Chitosan Microcapsules via Membrane Emulsification and Interfacial Complexation

The continuous fabrication via membrane emulsification of stable microcapsules using renewable, biodegradable biopolymer wall materials keratin and chitosan is reported here for the first time. Microcapsule formation was based on opposite charge interactions between keratin and chitosan, which formed polyelectrolyte complexes when solutions were mixed at pH 5.5. Interfacial complexation was induce

Development of Methodology to Investigate the Surface SMALPome of Mammalian Cells

Extraction of membrane proteins from biological membranes has traditionally involved detergents. In the past decade, a new technique has been developed, which uses styrene maleic acid (SMA) copolymers to extract membrane proteins into nanodiscs without the requirement of detergents. SMA nanodiscs are compatible with analytical techniques, such as small-angle scattering, NMR spectroscopy, and DLS,

Deep eutectic solvents—The vital link between ionic liquids and ionic solutions

When selecting a solvent for a given solute, the strongly held idiom “like dissolves like”, meaning that polar solvents are used for polar solutes, is often used. This idea has resulted from the concept that most molecular solvents are homogeneous. In a deep eutectic solvent (DES), however, both components can be ionic or non-ionic, polar or non-polar. By tuning the components, DESs can solubilize

Synthesis, Properties, and Applications of Bio-Based Cyclic Aliphatic Polyesters

Cyclic polymers have long been reported in the literature, but their development has often been stunted by synthetic difficulties such as the presence of linear contaminants. Research into the synthesis of these polymers has made great progress in the past decade, and this review covers the synthesis, properties, and applications of cyclic polymers, with an emphasis on bio-based aliphatic polyeste

Self-assembly of ionic and non-ionic surfactants in type IV cerium nitrate and urea based deep eutectic solvent

Understanding and manipulating micelle morphology are key to exploiting surfactants in various applications. Recent studies have shown surfactant self-assembly in a variety of Deep Eutectic Solvents (DESs) where both the nature of surfactants and the interaction of the surfactant molecule with the solvent components influence the size, shape, and morphology of the micelles formed. So far, micelle

Rheological modification of partially oxidised cellulose nanofibril gels with inorganic clays

This study aimed to quantify the influence of clays and partially oxidised cellulose nanofibrils (OCNF) on gelation as well as characterise their physical and chemical interactions. Mixtures of Laponite and montmorillonite clays with OCNF form shear-thinning gels that are more viscous across the entire shear range than OCNF on its own. Viscosity and other rheological properties can be fine-tuned u

Salt-Responsive Pickering Emulsions Stabilized by Functionalized Cellulose Nanofibrils

Oil-in-water emulsions have been stabilized by functionalized cellulose nanofibrils bearing either a negative (oxidized cellulose nanofibrils, OCNF) or a positive (cationic cellulose nanofibrils, CCNF) surface charge. The size of the droplets was measured by laser diffraction, while the structure of the shell of the Pickering emulsion droplets was probed using small-angle neutron scattering (SANS)

Bottom-up cubosome synthesis without organic solvents

Hypothesis: Bottom-up synthesis of cubosomes is more energetically favourable than top-down approaches. However, bottom-up methods often rely on organic solvents such as ethanol as diluents, and lead to concurrent formation of liposomes. We propose using non-toxic diluents such as honey, glycerol and lactic acid for bottom-up cubosome synthesis. Experiments: Cubosomes were prepared using solutions

Non-volatile conductive gels made from deep eutectic solvents and oxidised cellulose nanofibrils

Ionogels offer huge potential for a number of applications including wearable electronics and soft sensors. However, their synthesis has been limited and often relies on non-renewable or non-biocompatible components. Here we present a novel two-component ionogel made using just deep eutectic solvents (DESs) and cellulose. DESs offer a non-volatile alternative to hydrogels with highly tuneable prop

Spin diffusion transfer difference (SDTD) NMR : An advanced method for the characterisation of water structuration within particle networks

Hypothesis: The classical STD NMR protocol to monitor solvent interactions in gels is strongly dependent on gelator and solvent concentrations and does not report on the degree of structuration of the solvent at the particle/solvent interface. We hypothesised that, for suspensions of large gelator particles, solvent structuration could be characterised by STD NMR when taking into account the parti

Structural evolution of iron forming iron oxide in a deep eutectic-solvothermal reaction

Deep eutectic solvents (DES) and their hydrated mixtures are used for solvothermal routes towards greener functional nanomaterials. Here we present the first static structural and in situ studies of the formation of iron oxide (hematite) nanoparticles in a DES of choline chloride : urea where xurea = 0.67 (aka. reline) as an exemplar solvothermal reaction, and observe the effects of water on the r