Adsorption of unfolded Cu/Zn superoxide dismutase onto hydrophobic surfaces catalyzes its formation of amyloid fibrils
Intracellular aggregates of superoxide dismutase 1 (SOD1) are associated with amyotrophic lateral sclerosis. In vivo, aggregation occurs in a complex and dense molecular environment with chemically heterogeneous surfaces. To investigate how SOD1 fibril formation is affected by surfaces, we used an in vitro model system enabling us to vary the molecular features of both SOD1 and the surfaces, as weIntracellular aggregates of superoxide dismutase 1 (SOD1) are associated with amyotrophic lateral sclerosis. In vivo, aggregation occurs in a complex and dense molecular environment with chemically heterogeneous surfaces. To investigate how SOD1 fibril formation is affected by surfaces, we used an in vitro model system enabling us to vary the molecular features of both SOD1 and the surfaces, as we