Prediction from a random time point
In prediction (Wiener-, Kalman-) of a random normal process $\{X(t), t \in R\}$ it is normally required that the time $t_0$ from which prediction is made does not depend on the values of the process. If prediction is made only from time points at which the process takes a certain value $u,$ given a priori, ("prediction under panic"), the Wiener-prediction is not necessarily optimal; optimal should
