In situ passivation of GaxIn(1−x)P nanowires using radial AlyIn(1−y)P shells grown by MOVPE
GaxIn(1−x)P nanowires with suitable bandgap (1.35-2.26 eV) ranging from the visible to near-infrared wavelength have great potential in optoelectronic applications. Due to the large surface-to-volume ratio of nanowires, the surface states become a pronounced factor affecting device performance. In this work, we performed a systematic study of GaxIn(1−x)P nanowires' surface passivation, utilizing A