Speiser Meets Misiurewicz
We propose a notion of Misiurewicz condition for transcendental entire functions and study perturbations of Speiser functions satisfying this condition in their parameter spaces (in the sense of Eremenko and Lyubich). We show that every Misiurewicz entire function can be approximated by hyperbolic maps in the same parameter space. Moreover, Misiurewicz functions are Lebesgue density points of hype
