Learning-Based Dimensionality Reduction for Computing Compact and Effective Local Feature Descriptors
A distinctive representation of image patches in form of features is a key component of many computer vision and robotics tasks, such as image matching, image retrieval, and visual localization. State-of-the-art descriptors, from hand-crafted descriptors such as SIFT to learned ones such as HardNet, are usually high-dimensional; 128 dimensions or even more. The higher the dimensionality, the large