Frequency tracking of atrial fibrillation using hidden Markov models
A Hidden Markov Model (HMM) is used to improve the robustness to noise when tracking the atrial fibrillation (AF) frequency in the ECG. Each frequency interval corresponds to a state in the HMM. Following QRST cancellation, a sequence of observed states is obtained from the residual ECG, using the short time Fourier transform. Based on the observed state sequence, the Viterbi algorithm, which uses
