Search results

Filter

Filetype

Your search for "*" yielded 531834 hits

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2024-04-08 kl. 14.00–19.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ π/2 π/3 cos(3x) dx, (0.2) b) ∫ 6 2 1 x3 dx, (0.2) c) ∫ 5 −1 x+ 3 x+ 2 dx, (0.3) d) ∫ ∞ 2 xe−x2 dx. (0.3) 2. Lös begynnelsevärdesproblemen a) ( x2 + 1 ) yy′ = x,

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_240408.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2024-08-19 kl. 14.00–19.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ 5 0 x √ x dx, (0.2) b) ∫ 4 −1 3x− 8 (x+ 2)(x− 5) dx, (0.4) c) ∫ π 0 sinx 1 + cos2 x dx. (0.4) 2. Lös begynnelsevärdesproblemen a) x2y′ + xy = 1, x > 0, y(1) = 1

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_240819.pdf - 2025-02-09

No title

TRIGONOMETRISKA FORMLER 1cossin.1 22 =+ xx yxyxyx sincoscossin)sin(.2 ⋅+⋅=+ yxyxyx sincoscossin)sin(.3 ⋅−⋅=− yxyxyx sinsincoscos)cos(.4 ⋅−⋅=+ yxyxyx sinsincoscos)cos(.5 ⋅+⋅=− xxx cossin22sin.6 ⋅=      − − − = 1cos2 sin21 sincos 2cos.7 2 2 22 x x xx x 2 2cos1sin.8 2 xx − = 2 2cos1cos.9 2 xx + =       −= xx 2 cossin.10 π       −= xx 2 sincos.11 π

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Formelblad/Algebra_och_Analys1/TRIGFORMLER.pdf - 2025-02-09

No title

Maclaurinutvecklingar av några elementära funktioner I nedanstående utvecklingar har vi tagit med fyra termer plus en restterm av typen )(tBt n där )(tB är begränsad i en omgivning av noll. )( !3!2 1 4 32 tBttttet ++++= )( 432 )1ln( 5 432 tBtttttt +−+−=+ )( !3 )2)(1( !2 )1(1)1( 432 tBttttt + −− + − +⋅+=+ ααααααα )( !7!5!3 sin 9 753 tBtttttt +−+−= )( !6!4!2 1cos 8 642 tBttttt +−+−= )( 753 arctan 9

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Formelblad/Analys_2/Formelsamling_analys_2__Trig_Maclaurin.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2023-06-02 1. a) Skärningen finns genom lösning av ekvationssystemet0 + t1 = 1 + 2t2 1− t1 = −1− t2 3− 2t1 = −1− 2t2 ⇐⇒  t1 − 2t2 = 1 − t1 + t2 = −2 −2t1 + 2t2 = −4 ←− 1 ←−−− 2  t1 − 2t2 = 1 − t2 = −1 − 2t2 = −2 ←− −2 ⇐⇒  t1 − 2t2 = 1 − t2 = −1 0 = 0 ⇐⇒ { t1 = 3 t2 = 1 Insättning av t1 = 3 i ℓ1:s ekvation (e

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2023_06_02.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2023-08-22 1. Matrisen A saknar invers då den inte är kvadratisk. Matrisen B har en invers då detB = ∣∣∣∣ 0 √ 3 −1 1/2023 ∣∣∣∣ = 0 · 1 2023 − √ 3 · (−1) = √ 3 ̸= 0. Matrisen C saknar invers då detC = ∣∣∣∣∣∣ 1 1 2 2 −3 1 4 −1 5 ∣∣∣∣∣∣ = 1 · (−3) · 5 + 1 · 1 · 4 + 2 · 2 · (−1)− 1 · 1 · (−1)− 1 · 2 · 5− 2 · (−3) · 4 = −15

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2023_08_22.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2024-04-10 1. a) Vinkel vid hörnet Q är ∠PQR = [−→ QP, −→ QR ] . Beräkning ger −→ QP = (−2− 0, 0− 1, 0− 1) = (−2,−1,−1) och −→ QR = (1− 0, 2− 1, 1− 1) = (1, 1, 0). Alltså gäller cos ([−→ QP, −→ QR ]) = −→ QP · −→ QR∥∥∥−→QP ∥∥∥∥∥∥−→QR ∥∥∥ = (−2,−1,−1) · (1, 1, 0) ∥(−2,−1,−1)∥∥(1, 1, 0)∥ = −2− 1 + 0√ 6 · √ 2 = −3√ 2 · √ 3

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2024_04_10.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2024-05-31 1. a) Ekvationerna för linjerna på parameterform är ℓ1 : (x, y, z) = (3t, t, 4t) och ℓ2 : (x, y, z) = (2− 4t, 5+ 3t, 7− t) respektive. Skärningen bestäms av ekvationssystemet3t = 2− 4s t = 5 + 3s 4t = 7− s ⇐⇒ 3t +4s = 2 t −3s = 5 4t + s = 7 ←− ←− ⇐⇒  t −3s = 5 3t +4s = 2 4t + s = 7 ←− −3 ←−−−− −4 ⇐⇒

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2024_05_31.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2024-08-27 1. a) Skärningen bestäms av ekvationssystemet 1 + t = 1 + 2s 2− t = 5 + s −3− 2t = −1− 2s ⇐⇒  t −2s = 0 −t −s = 3 −2t +2s = 2 ←− 1 ←−−− 2 ⇐⇒  t −2s = 0 −3s = 3 −2s = 2 ←− − 2 3 ⇐⇒  t −2s = 0 −3s = 3 0 = 0 Vi har alltså s = 3 −3 = −1 och t = 2s = 2 · (−1) = −2. Insättning av t = −2 i ℓ1:s ekvation

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2024_08_27.pdf - 2025-02-09

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2023-04-19 kl 14.00-19.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. a) Skär linjen ℓ : (x, y, z) = (1, 8, 0) + t(1,−2, 3) och planet π :

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linj_r_Algebra_FMAA55_2023_04_19.pdf - 2025-02-09

No title

1 / @ .ki ,J E f (x) = \\,\"~) -c(v) = n-<➔-~ + (-11)-i = ri.( '~) = - ~ ft>vv~---W \-w-$\. ,J.d Saks\M 1 I-\-:.\ o-u b· '1-.-.- _ i " - l 1 b- tp ( +~e-l- 1) ~ -:. O,O'L1 '3:J- l X:: '3Sn WG r(x') - -:::. 'b1- ~ X=- -\1 _ (1,~ - ob) = - V\~ 1)1- e - +="~. 1/\.~-t ucl s.o.lsW.) IA"-l oo ?~ + 1' /Ju - %-=- - 2...1 k.r A. r., f'-A.-( ~ A_ (b 'P { 5ltJ4 \ \~tJ. tro, 'kJ ~e,,l) -- ?( ~\._\,(). r'\ \~

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_230825_lsg.pdf - 2025-02-09

No title

Matematisk statistik Tentamen: 2024–08–30 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. Notering: Denna uppgift liknar Vännman uppgift 2.29, där definitionen av oberoende skall användas. Vi betecknar utfallet med a prickar p̊a första tärningen och b p̊a den andra som (a, b). Vi f̊ar d̊a Ω =  (1, 1), (1, 2), (1, 3), (1,

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_241029_lsg.pdf - 2025-02-09

No title

Matematisk statistik Tentamen: 2023–10–27 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_231027.pdf - 2025-02-09

No title

Matematisk statistik Tentamen: 2024–04–03 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_240403.pdf - 2025-02-09

No title

Matematisk statistik Tentamen: 2024–08–30 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng. •

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_240830.pdf - 2025-02-09

No title

FORMELSAMLING FÖR HELSINGBORGSKURSERNA I MATEMATISK STATISTIK Del 1 - Sannolikhetsteori Sannolikhet och händelser • Additionssatsen: P(A ∪ B) = P(A) + P(B) − P(A ∩ B) • Betingad sannolikhet: P(A |B) = P(A∩B) P(B) • A och B är oberoende ⇐⇒ P(A ∩ B) = P(A) P(B). • Bayes sats: P(A |B) = P(B | A)P(A) P(B) • Satsen om total sannolikhet: P(A) = n∑ i=1 P(A |Hi) P(Hi) om Hi ∩ Hj = ∅ då i ̸= j och ⋃n i

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/formelsamling_matstat_hbg_v6.pdf - 2025-02-09

No title

FORMELSAMLING FÖR HELSINGBORGSKURSERNA I MATEMATISK STATISTIK Del 1 - Sannolikhetsteori Sannolikhet och händelser • Additionssatsen: P(A [ B) = P(A) + P(B) P(A \ B) • Betingad sannolikhet: P(A | B) = P(A\B) P(B) • A och B är oberoende () P(A \ B) = P(A) P(B). • Bayes sats: P(A | B) = P(B | A)P(A) P(B) • Satsen om total sannolikhet: P(A) = nX i=1 P(A | Hi) P(Hi) om Hi \ Hj = ; då i 6= j och Sn

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Formelblad_FMSF40_nyversion.pdf - 2025-02-09

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar, FMSF40 Sannolikhetsteori och Diskret Matematik 2023-04-12 1) L̊at ξ beteckna vikten av en p̊asa, vi har d̊a ξ ∈ N(m, 5). Därför gäller P (ξ ≥ 500) = 0.99 ⇐⇒ P (ξ < 500) = 0.01 ⇐⇒ Φ ( 500−m 5 ) = 0.01 ⇐⇒ 500−m 5 = Φ−1(0.01) = −2.326348 ⇐⇒ m = 500 + 5 · 2.326348 = 511.6317 Allts̊a gäller m = 511.6317. 2a) D̊a |B ∪ C| = |B|+ |C| − |B ∩ C|

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/Solution_Sannolikhetsteori_och_Diskret_Matematik_FMSF40_2023_04_12.pdf - 2025-02-09

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar, FMSF40 Sannolikhetsteori och Diskret Matematik 2023-08-25 1. a) L̊at ξ vara värden p̊a ett slumptal. D̊a ξ ∈ R(−1, 1) gäller P (ξ > 0.2) = ∫ 1 0.2 1 1−(−1) dx = 1 2 (1− 0.2) = 1 2 · 0.8 = 0.4. b) L̊at η vara antallet slumptal av tio p̊a varandra följande som överstiger 0.2. Enligt a) gäller η ∈ Bin(10, 0.4). Den sökta sonnolikheten a

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/Solution_Sannolikhetsteori_och_Diskret_Matematik_FMSF40_2023_08_25.pdf - 2025-02-09

No title

Matematisk statistik Lösningar: 2024–08–30 kl 0800–1300 Matematikcentrum FMSF40 Lunds universitet Sannolikhetsteori och diskret matematik 1. Givet att ξ ∈ N(m, 0.1) vill vi bestäma µ s̊a att P (ξ ≥ 5) = 0.99 P ( ξ −m 0.1 ≥ 5−m 0.1 ) = 0.99 Vi söker allts̊a ett värde s̊a att en N(0,1) fördelning är större än värdet i 99% av fallen. Detta svarar mot −λ0.01 = −2.3263, vilket ger 5−m 0.1 = −λ

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/fmsf40_2024_08_30_lsn.pdf - 2025-02-09