Multivariate generalized Laplace distribution and related random fields
Multivariate Laplace distribution is an important stochastic model that accounts for asymmetry and heavier than Gaussian tails, while still ensuring the existence of the second moments. A Levy process based on this multivariate infinitely divisible distribution is known as Laplace motion, and its marginal distributions are multivariate generalized Laplace laws. We review their basic properties and