A Sharp Version of the Benjamin and Lighthill Conjecture for Steady Waves with Vorticity
We give a complete proof of the classical Benjamin and Lighthill conjecture for arbitrary two-dimensional steady water waves with vorticity. We show that the flow force constant of an arbitrary smooth solution is bounded by the flow force constants for the corresponding conjugate laminar flows. We prove these inequalities without any assumptions on the geometry of the surface profile and put no re
