Noncrossed Product Matrix Subrings and Ideals of Graded Rings
We show that if a groupoid graded ring has a certain nonzero ideal property and the principal component of the ring is commutative, then the intersection of a nonzero twosided ideal of the ring with the commutant of the principal component of the ring is nonzero. Furthermore, we show that for a skew groupoid ring with commutative principal component, the principal component is maximal commutative