Finite codimensional invariant subspaces in Hilbert spaces of analytic functions
Let $\scr H$ denote a Hilbert space consisting of functions analytic on a bounded, open, connected subset $\Omega$ of the complex plane. Given certain natural hypotheses on $\scr H$, the author characterizes the finite-codimensional subspaces of $\scr H$ that are invariant under multiplication by $z$, showing that all such subspaces have the form $(p\scr H)^-$, where $p$ is a polynomial whose zero
