Parabolic equations with low regularity
Popular Abstract in Swedish Avhandlingen innehåller en ny metod att behandla ekvationer av den typ som styr t.ex. värmeledning och diffusion. Användning av ''halva derivator'' i tidsled möjliggör ett angreppssätt mycket likt den välkända Dirichlets princip inom elektrostatiken. Fördelen jämfört med existerande metoder är att den nya metoden ger en enkel och strömlinjeformad behandling av källtermeIn this work we study a variational method for treating parabolic equations that yields new results for non-linear equations with low regularity on source and boundary data. We treat mainly strongly parabolic quasilinear equations and systems in divergence form. The basic idea is to compose the parabolic operator with a weighted sum of the identity operator and the Hilbert transformation in the ti
