ex6.dvi
ex6.dvi Exercise 6 LQG and H∞ 1. Use the appropriate Riccati equation to prove the Kalman filter identity R2 + C2(sI − A)−1 R1(−sI − AT)−1CT 2 = [Ip + C2(sI − A)−1 L]R2[Ip + C2(−sI − AT)−1 L]T Use duality to deduce the return difference formula Q2 + BT(−sI − AT)−1Q1(sI − A)−1B = [Im + K(−sI − AT)−1B]T Q2[Im + K(sI − A)−1B] 2. Consider the Doyle-Stein LTR example from the LQG lecture G(s) = s+ 2 (s
https://www.control.lth.se/fileadmin/control/Education/DoctorateProgram/ControlSystemsSynthesis/2016/ex6.pdf - 2025-11-04
