Automated interpretation of PET/CT images in patients with lung cancer.
Purpose: To develop a completely automated method based on image processing techniques and artificial neural networks for the interpretation of combined [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) images for the diagnosis and staging of lung cancer. Methods: A total of 87 patients who underwent PET/CT examinations due to suspected lung cancer comp