Volumetric bias in segmentation and reconstruction : Secrets and solutions
Many standard optimization methods for segmentation and reconstruction compute ML model estimates for ap- pearance or geometry of segments, e.g. Zhu-Yuille [23], Torr [20], Chan-Vese [6], GrabCut [18], Delong et al. [8]. We observe that the standard likelihood term in these formu- lations corresponds to a generalized probabilistic K-means energy. In learning it is well known that this energy has a
