On Bulk Singularities in the Random Normal Matrix Model
We extend the method of rescaled Ward identities of Ameur, Kang, and Makarov to study the distribution of eigenvalues close to a bulk singularity, i.e., a point in the interior of the droplet where the density of the classical equilibrium measure vanishes. We prove results to the effect that a certain “dominant part” of the Taylor expansion determines the microscopic properties near a bulk2 singul
